

Deep Learning

Using a Convolutional Neural Network

Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Deep Learning Fundamentals & GPGPUs

November 30th, 2017 Ghent, Belgium

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Outline of the Course

- 1. Deep Learning Fundamentals & GPGPUs
- 2. Convolutional Neural Networks & Tools
- 3. Convolutional Neural Network Applications
- 4. Convolutional Neural Network Challenges
- 5. Transfer Learning Technique
- 6. Other Deep Learning Models & Summary

Outline

- Deep Learning Foundations
 - Biological Inspiration & Perceptron Limits
 - Artificial Neural Networks & Backpropagation
 - Application Examples in Science & Industry
 - Deep Learning Properties & Feature Learning
 - Parallel Computing Methods & Architectures
- GPGPUs & Tools
 - Terminology & Many-core Architecture
 - GPU Acceleration
 - NVidia & CUDA Examples
 - OpenCL Programming Models
 - Usage Models & Applications

Deep Learning Foundations

Learning Models derived from Biological Inspiration

- Biological Inspiration (cf. Machine Learning Tutorial last week)
 - Humans learn (a biological function) \rightarrow machines can learn
 - Means we are interested in 'replicating' the 'biological function'
- Approach: Replicating the 'biological structure'
 - Neurons connected to synapses (large number)
 - Action of neurons depends on 'stimula of different synapses'
 - Synapses have 'weights'
 - Principle: neurons are in the following like a 'single perceptron'
 - Neural network: put together a 'bunch of perceptrons' in layers
 - Deep learning network: create many layers with 'smart functionalites'

[1] Neural Networks Lecture 1 – Deep Learning Fundamentals & GPGPUs

Solution Tools: Artificial Neural Networks Learning Model

Perceptron Learning Algorithm – Revisited

- When: If we believe there is a linear pattern to be detected
 - Assumption: Linearly seperable data (lets the algorithm converge)
 - (cf. Machine learning tutorial last week)

Exercises

Practice: Non-linearly Seperable Data

- More often in practice, requires a 'soft threshold'
 - 'soft-threshold' means allowing 'some errors' being 'overall' better

(known also as XOR problem)

Simple Application Example: Limitations of Perceptrons

Simple perceptrons fail: 'not linearly seperable'

X1	<i>X</i> ₂	Y
0	0	-1
1	0	1
0	1	1
1	1	-1

Labelled Data Table

 X_2

(Idea: instances can be classified using two lines at once to model XOR)

X₁

Multi Layer Perceptrons – Artificial Neural Networks

- Key Building Block
 - Perceptron learning model
 - Simplest linear learning model
 - Linearity in learned weights w_i
 - One decision boundary
- Artificial Neural Networks (ANNs)
 - Creating more complex structures
 - Enable the modelling of more complex relationships in the datasets
 - May contain several intermediary layers
 - E.g. 2-4 hidden layers with hidden nodes
 - Use of activation function that can produce output values that are nonlinear in their input parameters

Solution Tools: Artificial Neural Networks Learning Model

ANN - Learning Algorithm & Optimization

Gradient Descent Method (1)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Gradient Descent Method (2)

- Gradient Descent (GD) uses all the training samples available for a step within a iteration
- Stochastic Gradient Descent (SGD) converges faster: only one training samples used per iteration

$$\mathbf{b} = \mathbf{a} - \gamma \nabla \mathbf{f}(\mathbf{a})$$
 $\mathbf{b} = \mathbf{a} - \gamma \frac{\partial}{\partial \mathbf{a}} \mathbf{f}(\mathbf{a})$ $\mathbf{b} = \mathbf{a} - \gamma \frac{d}{d\mathbf{a}} \mathbf{f}(\mathbf{a})$

ANN – Backpropagation Algorithm (BP) Basics

- One of the most widely used algorithms for supervised learning
 - Applicable in multi-layered feed-forward neural networks

ANN – Backpropagation Algorithm Forward Phase

- 1. 'Forward phase (does not change weights, re-use old weights)':
 - Weights obtained from the previous iteration are used to compute the output value of each neuron in the network ('initialize weights randomly')
 - Computation progresses in the 'forward direction',

i.e. outputs 'out' of the neurons at level k are computed prior to level k+1

ANN – Backpropagation Algorithm Backward Phase

- 2. 'Backward phase ('learning' \rightarrow change the weights in the ANN)':
 - Weight update formula is applied in the 'reverse direction'
 - Weights at level K + 1 are updated before the weights at level k
 - Idea: use the errors for neurons at layer k + 1 to estimate errors for neurons at layer k

$$w_j < -w_j - \lambda \frac{\partial E(w)}{\partial w_j}$$

weight update formula of the 'gradient descent method'

Now that can compute the error one-by-one

$$E_{in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^T \mathbf{w}$$

(regularization method 'weight decay' or 'weight drop' is used in neural networks')

[Video] Towards Multi-Layer Perceptrons

[2] YouTube Video, Neural Networks – A Simple Explanation

High-level Tools – Keras

- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano
- The key idea behind the Keras tool is to enable faster experimentation with deep networks
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dense(units,

```
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None)
```

keras.optimizers.SGD(lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

- Tool Keras supports inherently the creation of artificial neural networks using Dense layers and optimizers (e.g. SGD)
- Includes regularization (e.g. weight decay) or momentum

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Methods Overview – Focus in this Lecture

 Statistical data mining methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data exploration, selection, or reduction

ANN – Application Example Remote Sensing 'SALINAS'

- Hyperspectral data (AVIRIS sensor)
 - 'Salinas' Valley, California
 - Spectral resolution: 224 bands
 - Spatial resolution: 3.7 meter pixels

(OA = Overall Accuracy; AA = Average Accuracy; K = Kappa coefficient obtained by classifiers)

	Original			DAFE			DAFE_SDAP_DAFE		
	(204 Feat.)			(14 Feat.)			(14 Feat.)		
	RF	SVM	ANN	RF	SVM	ANN	RF	SVM	ANN
AA	91.46	93,11	84,73	94,38	94,23	92,92	97,68	98,02	95,84
OA	87.75	89,12	92,27	89,89	88,22	94,91	96,02	96,77	97,16
К	86.34	87,87	91,37	88,72	86,89	94,32	95,57	96,4	96,84

Lecture 1 – Deep Learning Fundamentals & GPGPUs

ANN – Application Example in Industry

- ~2009 Netflix Prize Challenge 2009
 - Data: Netflix company provided data to learn from previous movie rentals
 - Challenge: Improve Netflix in-house movie recommender system
 - Prize: 1.000.000 US \$ for team with 10% improvements
 - Approaches: Machine learning algorithms and collaborative filterings
 - Winner: Prize received by working with Artificial Neural Network (ANNs)

[5] A. Töscher and M. Jahrer, 'The BigChaos Solution to the Netflix Grand Prize', 2009

ANN – Handwritten Character Recognition MNIST Dataset

- Metadata
 - Subset of a larger dataset from US National Institute of Standards (NIST)
 - Handwritten digits including corresponding labels with values 0 to 9
 - All digits have been size-normalized to 28 * 28 pixels and are centered in a fixed-size image for direct processing
 - Not very challenging dataset, but good for experiments / tutorials
- Dataset Samples
 - Labelled data (10 classes)
 - Two separate files for training and test
 - 60000 training samples (~47 MB)
 - 10000 test samples (~7.8 MB)

MNIST Dataset for the Tutorial

- When working with the dataset
 - Dataset is not in any standard image format like jpg, bmp, or gif
 - File format not known to a graphics viewer
 - One needs to write typically a small program to read and work for them
 - Data samples are stored in a simple file format that is designed for storing vectors and multidimensional matrices
 - The pixels of the handwritten digit images are organized row-wise with pixel values ranging from 0 (white background) to 255 (black foreground)
 - Images contain grey levels as a result of an anti-aliasing technique used by the normalization algorithm that generated this dataset.
- Available already for the tutorial
 - Part of the Tensorflow tutorial package and Keras tutorial package

download & unpack MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

Exercises

Ugent Tier-2 Clusters

- Using Parallel Computing
 - Compiled from open source
 - Requires MPI library
 - Intended to be used by High Performance Computing system (i.e. good interconnects)

- Job runs
 - Use of job scripts
 - Depend on scheduler

[2] UGent Tier-2 Clusters

- Use our ssh keys to get an access and use reservation
- Put the private key into your ./ssh directory (UNIX)
- Use the private key with your putty tool (Windows)

UGent Tier-2 Clusters – GOLETT in the Tutorial

	#nodes	CPU	Mem/node	Diskspace/node	Network
Raichu	64	2 x 8-core Intel E5-2670 (Sandy Bridge @ 2.6 GHz)	32 GB	400 GB	GbE
Delcatty	160	2 x 8-core Intel E5-2670 (Sandy Bridge @ 2.6 GHz)	64 GB	400 GB	FDR InfiniBand
Phanpy	16	2 x 12-core Intel E5-2680v3 (Haswell-EP @ 2.5 GHz)	512 GB	3x 400 GB (SSD, striped)	FDR InfiniBand
Golett	200	2 x 12-core Intel E5-2680v3 (Haswell-EP @ 2.5 GHz)	64 GB	500 GB	FDR-10 InfiniBand
Swalot	128	2 x 10-core Intel E5-2660v3 (Haswell-EP @ 2.6 GHz)	128 GB	1 TB	FDR InfiniBand

[2] UGent Tier-2 Clusters

Lecture 1 – Deep Learning Fundamentals & GPGPUs

UGent Tier-2 Clusters – Login & Module Swap Cluster/golett

adminuser@linux-8djg:~> ssh vsc42544@login.hpc.ugent.be Last login: Wed Nov 22 17:15:00 2017 from pool-216-7-zam606.vpn.kfa-juelich.de

STEVIN HPC-	UGent inf	frastruc	ture st	tatus on	Wed, 22 No	ov 2017 22:	15:01
cluster	- full - nodes	free - nodes	part · free	- total - nodes	running - jobs	· queued jobs	
delcatty golett phanpy raichu swalot	153 102 11 56 107	0 35 0 0 0	4 57 5 0 21	159 196 16 56 128	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	
For a full view of the current loads and queues see: http://hpc.ugent.be/clusterstate/ Updates on maintenance and unscheduled downtime can be found on https://www.vscentrum.be/en/user-portal/system-status							

[vsc42544@gligar01 ~]\$ module swap cluster/golett

The following have been reloaded with a version change:

cluster/delcatty => cluster/golett

[2] UGent Tier-2 Clusters

Copy Files to your Home Directory

[vsc42544@gligar03 deeplearning]\$ pwd /user/home/gent/vsc425/vsc42544/deeplearning [vsc42544@gligar03 deeplearning]\$ ls -al total 1152 drwxrwxr-x 2 vsc42544 vsc42544 4096 Nov 29 22:28 . drwx----- 6 vsc42544 vsc42544 4096 Nov 29 22:57 ... -rwxrw-r-- 1 vsc42544 vsc42544 581 Nov 29 19:27 job ann hidden.sh -rwxrw-r-- 1 vsc42544 vsc42544 567 Nov 29 19:17 job ann.sh 394 Nov 28 18:12 job basic.sh -rw-r--r-- 1 vsc42544 vsc42544 594 Nov 29 22:27 job cnn.sh -rwxrw-r-- 1 vsc42544 vsc42544 550 Nov 29 16:07 job data.sh -rwxrw-r-- 1 vsc42544 vsc42544 -rw----- 1 vsc42544 vsc42544 26 Nov 29 21:21 KERAS MNIST ANN.e1179465 26 Nov 29 21:32 KERAS MNIST ANN HIDDEN.e1179466 -rw----- 1 vsc42544 vsc42544 -rw----- 1 vsc42544 vsc42544 348173 Nov 29 21:32 KERAS MNIST ANN HIDDEN.01179466 -rw-r--r-- 1 vsc42544 vsc42544 1571 Nov 29 21:20 KERAS MNIST ANN HIDDEN.py -rw----- 1 vsc42544 vsc42544 216975 Nov 29 21:21 KERAS MNTST ANN.01179465 -rw-r--r-- 1 vsc42544 vsc42544 1396 Nov 29 21:10 KERAS MNIST ANN.py 2170 Nov 29 22:28 KERAS MNIST CNN.py -rw-r--r-- 1 vsc42544 vsc42544 -rw-r--r-- 1 vsc42544 vsc42544 739 Nov 29 16:07 KERAS MNIST DATA.py -rw-r--r-- 1 vsc42544 vsc42544 1418 Nov 29 16:41 TF MNIST basic.py

ANN – MNIST Dataset – Parameters & Data Normalization

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.utils import np_utils

parameters
NB_CLASSES = 10
NB_EPOCH = 200
BATCH_SIZE = 128
VERBOSE = 1
N_HIDDEN = 128
OPTIMIZER = 'SGD'
VALIDATION SPLIT = 0.2

NB_CLASSES: 10 Class Problem

- NB_EPOCH: number of times the model is exposed to the training set – at each iteration the optimizer adjusts the weights so that the objective function is minimized
- BATCH_SIZE: number of training instances taken into account before the optimizer performs a weight update
- OPTIMIZER: Stochastic Gradient Descent ('SGD') – only one training sample/iteration
 - Data load shuffled between training and testing set
 - Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are reshaped in 60000 x 784 including type specification (i.e. float32)
 - Data normalization: divide by 255 – the max intensity value to obtain values in range [0,1]

ANN – MNIST Dataset – A Simple Model

ANN – MNIST Dataset – Job Script

```
#!/bin/bash
#PBS -l nodes=1:ppn=all
#PBS -l walltime=1:0:0
#PBS -N KERAS_MNIST_ANN
module load TensorFlow/1.4.0-intel-2017b-Python-3.6.3
module load Keras/2.1.1-intel-2017b-Python-3.6.3
# make sure Keras is using TensorFlow as backend
export KERAS_BACKEND=tensorflow
```

```
export WORKDIR=$VSC_SCRATCH/${PBS_JOBNAME}_${PBS_JOBID}
mkdir -p $WORKDIR
cd $WORKDIR
```

```
export OMP_NUM_THREADS=1
python $PBS_0_WORKDIR/KERAS_MNIST_ANN.py
```

```
echo "Working directory was $WORKDIR"
```

ANN – MNIST Dataset – A Simple Model – Output

[vsc42544@gligar03 deeplearning]\$ more KERAS_MNIST_ANN.e1179465 Using TensorFlow backend.

[vsc42544@gligar03 deeplearning]\$ more KERAS_MNIST_ANN.o1179465

60000 train samples 10000 test samples

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 10)	7850
activation_1 (Activation)	(None, 10)	0
Total params: 7,850 Trainable params: 7,850 Non-trainable params: 0		

Train on 48000 samples, validate on 12000 samples

[vsc42544@gligar03 deeplearning]\$ tail KERAS_MNIST_ANN.o1179465 48000/48000 [=============] - 1s 12us/step - loss: 0.2760 - acc: 0.9227 - val_loss: 0.2747 - val_acc: 0.9234 32/10000 [.....] - ETA: 0s 3104/10000 [=========>...] - ETA: 0s 6208/10000 [=========>...] - ETA: 0s 9344/10000 [============>...] - ETA: 0s 10000/10000 [===============]] - 0s 16us/step Test score: 0.277443544486 Test accuracy: 0.9221

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS_MNIST_ANN_1179465.master19.golett.gent.vsc
Artificial Neural Network – Feature Engineering & Layers

- Approach: Prepare data before
 - Classical Machine Learning
 - Feature engineering (e.g. SDAP)

- Dimensionality reduction techniques (e.g. DAFE: smaller, better data)
- Low number of layers (many layers computationally infeasible in the past)
- Very succesful for speech recognitition ('state-of-the-art in your phone')

Deep Learning – Feature Learning & More Smart Layers

- Approach: Learn Features
 - Classical Machine Learning
 - (Powerful computing evolved)
 - Deep (Feature) Learning

- Very succesful for image recognition and other emerging areas
- Assumption: data was generated by the interactions of many different factors on different levels (i.e. form a hierarchical representation)
- Organize factors into multiple levels, corresponding to different levels of abstraction or composition(i.e. first layers do some kind of filtering)
- Challenge: Different learning architectures: varying numbers of layers, layer sizes & types used to provide different amounts of abstraction

Deep Learning – Feature Learning Benefits

- Feature engineering requires expert knowledge, is timeconsuming and a often long manual process, requires often 90% of the time in applications, and is sometimes even problem-specific
- Deep Learning enables feature learning promising a massive time advancement

[3] H. Lee et al., 'Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations'

5

5

6

5-

Deep Learning – Key Properties & Application Areas

- In Deep Learning networks are many layers between the input and output layers enabling multiple processing layers that are composed of multiple linear and non-linear transformations
- Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)
- Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher level features are derived from lower level features and thus form a hierarchical representation
 - Application before modeling data with other models (e.g. SVM)
 - Create better data representations and create deep learning models to learn these data representations from large-scale unlabeled data
 - Application areas
 - Computer vision
 - Automatic speech recognition
 - Natural language processing
 - Bioinformatics

•

(Deep Learning is often characterized as 'buzzword')

(Deep Learning is often 'just' called rebranding of traditional neural networks)

(hierarchy from low level to high level features)

Basic ImageNet Dataset as Base for Learning

- Dataset: ImageNet
 - Total number of images: 14.197.122
 - Number of images with bounding box annotations: 1.034.908

[7] J. Dean et al., 'Large-Scale Deep Learning'

High level category	# synset (subcategories)	Avg # images per synset	Total # images
amphibian	94	591	56K
animal	3822	732	2799К
appliance	51	1164	59K
bird	856	949	812K
covering	946	819	774K
device	2385	675	1610K
fabric	262	690	181K
fish	566	494	280K
flower	462	735	339K
food	1495	670	1001K
fruit	309	607	188K
fungus	303	453	137K
furniture	187	1043	195K
geological formation	151	838	127K
invertebrate	728	573	417K
mammal	1138	821	934K
musical instrument	157	891	140K
plant	1666	600	999K
reptile	268	707	190K
sport	166	1207	200K
structure	1239	763	946K
tool	316	551	174K
tree	993	568	564K
utensil	86	912	78К
vegetable	176	764	135K
vehicle	481	778	374K
person	2035	468	952K

[8] ImageNet Web page

Exercises – Add Hidden Layers

ANN – MNIST Dataset – Add Two Hidden Layers

Compilation
model.compile(loss='categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'])

Fit the model

history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

```
# evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

Lecture 1 – Deep Learning Fundamentals & GPGPUs

ANN – MNIST Dataset – Add Hidden Layers – JobScript

```
#!/bin/bash
#PBS -l nodes=1:ppn=all
#PBS -l walltime=1:0:0
#PBS -N KERAS_MNIST_ANN_HIDDEN
```

```
module load TensorFlow/1.4.0-intel-2017b-Python-3.6.3
module load Keras/2.1.1-intel-2017b-Python-3.6.3
```

```
# make sure Keras is using TensorFlow as backend
export KERAS_BACKEND=tensorflow
```

```
export WORKDIR=$VSC_SCRATCH/${PBS_JOBNAME}_${PBS_JOBID}
mkdir -p $WORKDIR
cd $WORKDIR
```

```
export OMP_NUM_THREADS=1
python $PBS_0_WORKDIR/KERAS_MNIST_ANN_HIDDEN.py
```

```
echo "Working directory was $WORKDIR"
```

ANN – MNIST Dataset – Add Hidden Layers - Output

[vsc42544@gligar03 deeplearning]\$ more KERAS_MNIST_ANN_HIDDEN.o1179466
60000 train samples
10000 test samples

Layer (type)	0utput	Shape	Param #
dense_1 (Dense)	(None,	128)	100480
activation_1 (Activation)	(None,	128)	0
dense_2 (Dense)	(None,	128)	16512
activation_2 (Activation)	(None,	128)	0
dense_3 (Dense)	(None,	10)	1290
activation_3 (Activation)	(None,	10)	0
Total params: 118,282 Trainable params: 118,282 Non-trainable params: 0			

Train on 48000 samples, validate on 12000 samples Epoch 1/200

128/48000	[]	-	ETA:	4:29 - loss: 2.3122 - acc: 0.1094
2176/48000	[>]	-	ETA:	16s - loss: 2.2732 - acc: 0.1085
4864/48000	[==>]	-	ETA:	7s - loss: 2.2178 - acc: 0.1721
7424/48000	[===>]	-	ETA:	4s - loss: 2.1676 - acc: 0.2515

[vsc42544@gligar03 deeplearning]\$ tail KERAS_MNIST_ANN_HIDDEN.01179466

32/10000	[]	-	ETA: 0s
2272/10000	[====>]	-	ETA: Os
4544/10000	[========>]	-	ETA: 0s
6784/10000	[=====>,]	-	ETA: 0s
9088/10000	[=====>]	-	ETA: 0s
10000/10000	[=======]]	-	0s 22us/step
Test score:	0.0772481116249		

Test accuracy: 0.9773

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS_MNIST_ANN_HIDDEN_1179466.master19.golett.gent.vsc

Deep Learning Architectures

- Deep Neural Network (DNN)
 - 'Shallow ANN' approach with many hidden layers between input/output
- Convolutional Neural Network (CNN, sometimes ConvNet)
 - Connectivity pattern between neurons is like animal visual cortex

(focus in this course)

- Deep Belief Network (DBN)
 - Composed of mult iple layers of variables; only connections between layers
- Recurrent Neural Network (RNN)
 - 'ANN' but connections form a directed cycle; state and temporal behaviour
- Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica
- Deep Learning needs 'big data' to work well & for high accuracy works not well on sparse data

Deep Learning – Parallel Computing Methods

- Exploiting two kinds of parallelism
 - Model and data parallelism ('hierarchical domain decomposition')
 - Challenge: distributed asynchronous stochastic gradient descent algorithm
 - Minimal network cost: most densely connected areas are on one partition

[Video] Deep Learning 'Revolution'

[9] The Deep Learning Revolution, YouTube

Multi-core CPU Processors

- Significant advances in CPU (or microprocessor chips)
 - Multi-core architecture with dual, quad, six, or n processing cores
 - Processing cores are all on one chip
- Multi-core CPU chip architecture
 - Hierarchy of caches (on/off chip)
 - L1 cache is private to each core; on-chip
 - L2 cache is shared; on-chip

^[10] Distributed & Cloud Computing Book

- L3 cache or Dynamic random access memory (DRAM); off-chip
- Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
- Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
- Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

Many-core GPUs

- Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
- Compared to multi-core CPUs, GPUs consist of a many-core architecture with hundreds to even thousands of very simple cores executing threads rather slowly
- Use of very many simple cores
 - High throughput computing-oriented architecture
 - Use massive parallelism by executing a lot of concurrent threads slowly
 - Handle an ever increasing amount of multiple instruction threads
 - CPUs instead typically execute a single long thread as fast as possible
- Many-core GPUs are used in large clusters and within massively parallel supercomputers today
 - Named General-Purpose
 Computing on GPUs (GPGPU)

[10] Distributed & Cloud Computing Book

GPU Acceleration

- CPU acceleration means that GPUs accelerate computing due to a massive parallelism with thousands of threads compared to only a few threads used by conventional CPUs
- GPUs are designed to compute large numbers of floating point operations in parallel
- GPU accelerator architecture example (e.g. NVIDIA card)
 - GPUs can have 128 cores on one single GPU chip
 - Each core can work with eight threads of instructions
 - GPU is able to concurrently execute 128 * 8 = 1024 threads
 - Interaction and thus major (bandwidth) bottleneck between CPU and GPU is via memory interactions
 - E.g. applications that use matrix – vector multiplication

[10] Distributed & Cloud Computing Book

(other well known accelerators & many-core processors are e.g. Intel Xeon Phi → run 'CPU' applications easier)

Exercises

GPU Application Example – Matrix-Vector Multiplication

What are the benefits of using GPUs in this application?

NVIDIA Fermi GPU Example

[10] Distributed & Cloud Computing Book

GPGPUs – Terminology

- **General-Purpose Computing On Graphics Processing Units (GPGPUs)**
- GPUs have been traditionally used to perform computing for computer graphics (e.g games)
- **GPGPUs use GPUs to perform application computation instead or in addition to normal CPUs**
- **Origin & HPC relationships**
 - Starting ~2001 with reformulating computational problems in terms of graphics primitives (e.g. matrix multiplications)
- **Programming Models**
 - **OpenCL** as open general-purpose GPU programming model
 - NVidia Compute Unified Device Architecture (CUDA) as dominant propriety framework
- Selected Application Fields

- [11] NVidia Tesla
- GPU-accelerated scientific computing applications increasing
- Increasing machine learning & statistical data mining implementations

GPGPUs – Architecture

- Parallelizes the already 'parallel nature of graphics processing'
 - Use of multiple graphics cards on one computer
 - Use of large numbers of graphics chips
- Terminology
 - GPU 'device'
 - CPU 'host'
 - Function 'kernel' (runs on device)
 - Vertices & fragments are elements in processing 'streams'

[11] J. Owens, GPGPU Architecture Overview

- GPUs have a parallel throughput architecture that emphasizes executing many concurrent threads slowly, rather than executing a single thread very quickly
- In the context of GPUs, the Kernel is a function that runs on the GPU device

GPGPUs – From Pure Graphics to General Processing

Rendering Pipeline

Programmable Pipeline

[11] J. Owens, GPGPU Architecture Overview

- Rendering pipeline designed for massively parallelism and independent operations
- General processing in science and engineering partly rely on independent operations & data

GPGPUs – Performance & Programming Approach

- GPUs are 'massively multithreaded' many-core chips
 - Hundreds of cores & thousands of concurrent threads

Aggressive performance growth

 Different to plain 'multi-core' (multi-core – heavy weight fast threads)
 (GPUs – fine light-weight slow threads)

- Stream' / data parallel programming approach
 - Set of records' that require similar computation (less communication)
 - Kernel functions are applied to each element of the stream

GPGPUs are very restrictive in operations and programming, but ideal for data parallel tasks

GPGPUs are very effective for a set of records that require similar computation named as streams

^[31] NVidia Training Introduction

GPGPUs – Programming Model OpenCL

Open Computing Language (OpenCL)

[12] Khronos Group, OpenCL

- The open standard for parallel programming of heterogeneous systems
- Enable algorithms & programming patterns to be easily 'accelerated'

Practice

 Hard to compete with NVidia
 CUDA & emerge as standard
 (e.g. MPI took > 10 years to position itself as the programming standard)

- OpenCL is the open general-purpose GPU programming model approach that is vendor neutral
- Despite of the open standard OpenCL the de-facto standard in GPU programming is CUDA today

GPGPUs – Programming Model CUDA

- Compute Unified Device Architecture (CUDA)
 - Industry standard programming model
 - Dominant since NVidia is major producer of GPGPUs in the market
 - Subset of programming language C
 - Defines a programming model and a memory model
- (Unlimited) Scalability
 - Parallel portions of application executed on the GPU device as kernels
 - Program for one thread can be instantiated on many parallel threads
 - Program runs on any number of processors without recompiling

CUDA is the dominant propriety general-purpose GPU programming model that is vendor-specific

GPGPUs – NVidia Usage Models

- Example: Three 'different types of NVidia GPUs'
 - Designed for different levels of performance requirements

[14] NVidia Training Introduction

Hybrid Programming: CPUs & GPGPUs Revisited

- Emerging 'hybrid programming model'
 - Using General-purpose computing on graphics processing units (GPGPUs)
 - Combine with traditional CPUs to accelerate elements of processing
 - Idea: exploit parallelism across host CPU cores in addition to the GPU cores

[15] 'Boosting CUDA Applications with CPU-GPU Hybrid Computing'

(constant innovation: new generation Intel Knights Landing many integrated cores (MIC) → run directly as host CPUs)

• One drawback of a typical GPU is that it requires a host CPU in order to be used in a HPC system

GPGPUs – Selected Applications

- Human brain research
 - Example: Registration of high resolution brain images

[16] NVidia Application Lab Juelich

- AMBER / CHARMM applications
 - Traditional HPC Applications
 - Molecular dynamics package to simulate molecular dynamics on biomolecules
 - Emerging support for GPGPU processing

HPC System KU Leuven – GPUs

- Accelerators
 - Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs, 64 GB of RAM and 2 GPUs Tesla K40

modified from [18] HPC System KU Leuven

Exercises – Check Login into the KU Leuven System

[vsc42544@gligar03 ~]\$ ssh login.hpc.kuleuven.be

Keras with Tensorflow Backend – GPU Support

- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano
- The key idea behind the Keras tool is to enable faster experimentation with deep networks
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

- Tensorflow is an open source library for deep learning models using a flow graph approach
- Tensorflow nodes model mathematical operations and graph edges between the nodes are so-called tensors (also known as multi-dimensional arrays)
- The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
- Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[20] Tensorflow Deep Learning Framework

[21] A Tour of Tensorflow

[Video] GPGPUs & Applications

[17] 'HPC – GPGPUs', YouTube Video

Lecture Bibliography

Lecture Bibliography (1)

- [1] YouTube Video, 'The Deep Learning Revolution', Online: <u>https://www.youtube.com/watch?v=Dy0hJWltsyE</u>
- [2] YouTube Video, 'Neural Networks, A Simple Explanation', Online: <u>http://www.youtube.com/watch?v=gcK_5x2KsLA</u>
- [3] H. Lee et al., 'Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations', Proceedings of the 26th annual International Conference on Machine Learning (ICML), ACM, 2009
- [4] Rosenblatt,'The Perceptron: A probabilistic model for information storage and orgainzation in the brain', Psychological Review 65(6), pp. 386-408, 1958
- [5] Andreas Töscher and Michael Jahrer, The BigChaos Solution to the Netflix Grand Prize, 2009
- [6] Big Data Tips, 'Gradient Descent', Online: <u>http://www.big-data.tips/gradient-descent</u>
- [7] J. Dean et al., 'Large scale deep learning', Keynote GPU Technical Conference, 2015
- [8] ImageNet Web page,
 Online: <u>http://image-net.org</u>
- [9] YouTube Video, 'The Deep Learning Revolution', Online: <u>https://www.youtube.com/watch?v=DyOhJWltsyE</u>
- [10] K. Hwang, G. C. Fox, J. J. Dongarra, 'Distributed and Cloud Computing', Book, Online: <u>http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049</u>
- [11] NVidia Tesla,
 Online: <u>http://www.nvidia.de/object/tesla-high-performance-computing-de.html</u>

Lecture Bibliography (2)

- [11] J.Owens, 'GPGPU Architecture Overview', Online: <u>http://gpgpu.org/static/s2007/slides/02-gpu-architecture-overview-s07.pdf</u>
- [12] Khronos Group, 'OpenCL', Online: <u>https://www.khronos.org/opencl/</u>
- [13] Rastergrid Blog Figure,
 Online: <u>http://rastergrid.com/blog/2010/11/texture-and-buffer-access-performance/</u>
- [14] SDSC, Nvidia Training Introduction,
 Online: <u>http://www.sdsc.edu/us/training/assets/docs/NVIDIA-01-Intro.pdf</u>
- [15] Changmin Lee, Won Woo Ro, Jean-Luc Gaudiot, 'Boosting CUDA Applications with CPU–GPU Hybrid Computing', Int J Parallel Prog (2014) 42:384–404, DOI 10.1007/s10766-013-0252-y
- [16] Juelich NVidia Application Lab @SC2013,
 Online: <u>http://on-demand.gputechconf.com/supercomputing/2013/presentation/SC3134-GPU-Accelerated-Applications-Julich.pdf</u>
- [17] 'HPC Get a low-cost supercomputer by unleashing the power of GPUs', Online: <u>https://www.youtube.com/watch?v=HYIWxPeL9-k</u>
- [18] HPC System KU Leuven,
 Online: <u>https://www.vscentrum.be/infrastructure/hardware/hardware-kul</u>
- [19] Keras Python Deep Learning Library, Online: <u>https://keras.io/</u>
- [20] Tensorflow Deep Learning Framework, Online: <u>https://www.tensorflow.org/</u>
- [21] A Tour of Tensorflow, Online: <u>https://arxiv.org/pdf/1610.01178.pdf</u>

